

Iceland Liechtenstein Norway Norway grants grants ГА С R

DESIGN AND EXPERIMENTAL VERIFICATION OF AN AXIAL MM TURBINE

TAČR KAPPA DEXPAND – FINAL MEETING JAN ŠPALE 07/03/2024

OUTLINE

- 1. Motivation
- 2. Experimental test rig
 - 3. Turbine design
 - 4. Manufacturing, assembly and commissioning
 - 5. Experimental results
 - 6. Future work

Iceland [Liechtenstein Norway Norway grants grants

1. MOTIVATION

1. MOTIVATION

- small-scale distributed energy systems transforming low-temperature external heat sources (waste heat, geothermal heat, solar thermal) or low-grade solid fuels often utilize Organic Rankine Cycle power systems
- usually use volumetric expanders derived/rebuilt from HVAC compressors robust, but inefficient -> replacing it with a turbine is a logical step towards increasing system efficiency
- axial impulse stage is probably the easiest concept to implement, also achieves lowest rotational speeds (bearing issues)

Iceland Liechtenstein Norway **Norway** grants grants

2. EXPERIMENTAL TEST RIG

Main features

- Woodchips-fired
- 120kWth/8kWel
- Working fluid MM
- Equipped with patented RVE
- RVE to be replaced by an axial impulse turbine
- Direct wf heating
- Several thousands op. hours

2. EXPERIMENTAL TEST RIG

6

ČVUT UCEEB

Whole CHP ORC unit fit in a container

Robust combustion chamber

designed to meet emission limits even for low-quality biomass equipped with a **moving grate** for slag desintigration

In-house developed rotary vane expander

2. EXPERIMENTAL TEST RIG

Steady state operation

Parameter	50 kW _{th} unit	120 kW _{th} unit	Units
Flue gases			
Evaporator inlet temperature	650	1400*	°C
Economizers outlet temperature	164	132	°C
Thermal power input to the ORC	46.7	121	kW
ORC			
Expander inlet pressure	553	522	kPa
Expander inlet temperature	182	180	°C
Expander outlet pressure	58	46	kPa
MM mass flow rate	0.125	0.3	kg·s⁻¹
Auxiliaries			
Expander rotational speed	3026	3034	rpm
Gross electrical power output	3100	7565	W
Net electrical power output	1990	6200	W
Expander isentropic efficiency	61	56	%
Total net CHP efficiency	84	89	%

Iceland Liechtenstein Norway **Norway** grants grants

3. TURBINE DESIGN

Parameter	Value	Units
Expander inlet pressure p ₁	650	kPa
Expander inlet temperature T ₁	190	$^{\circ}\mathrm{C}$
Expander inlet superheating T_{SH}	10	Κ
Expander outlet pressure p ₃	55	kPa
Working fluid	$\mathbf{M}\mathbf{M}$	_
Working fluid mass flow rate \dot{m}_{wf}	0.3	${ m kg} \cdot { m s}^{-1}$

 Very high molar mass and molecular complexity

=>low enthalpy drops along the expansion

- =>very low speed of sound
- =>supersonic turbomachinery
- =>extremely non-ideal compressible fluid flow

=>1D loss correlations often fail

Name: Hexamethyldisiloxane (MM)

Formula: $C_6H_{18}OSi_2$

Property (unit)	Value
MW (kg/kmol)	162.37752
<i>Т</i> _{ТР} (К)	204.93
<i>T</i> _c (K)	518.75 ± 0.40
P _c (MPa)	1.939 ± 0.02
v _c (m ³ /kmol)	0.629 ± 0.03
Tb (K)	373.67 ± 0.10
dh_vap at Tb (kJ/kg)	192.5
Acentric factor	0.419

Current author's progress with the thesis $Z_T = \frac{P_T}{T_T R \rho(T_T, P_T)}$

- Accounting for compressibility effects Z and Γ
- Bethe-Zel'dovich-Thompson (BZT) fluid which exhit $\Gamma = 1 + \frac{a}{c} \cdot \left(\frac{\delta a}{\delta p}\right)_{is}$ non-ideal behaviour in single phase vapour region.
- Speed of sound increases along the expansion =>

Turbine design parameters, initially chosen from 0D maps, later

optimized

Parameter	Initial value	Units
Rotational speed n [*]	24000(28000)	\mathbf{rpm}
Midspan diameter Dmid	100	$\mathbf{m}\mathbf{m}$
Nozzle outlet flow angle $\alpha 2$	13	0
Isentropic efficiency guess	70	%
Partial admission guess e [*]	58.5(97.5)	%
Blade height ratio	0.1(0.055)	_
Minimum blade height h min	5	$\mathbf{m}\mathbf{m}$
Rotor blades aspect ratio AR	2	_
Mechanical power output P_{mech}	11	kW

Nozzle design – supersonic convergent-divergent de Laval nozzles

- Utilizes ve urbopumps Generic computational node $\dot{m} = \bar{m} = \rho c A$ $h\left(\bar{s},\rho\right) + \frac{1}{2}c^{2}\left(\rho;\bar{s},\bar{h}_{in}\right) = \bar{h}_{in} \rightarrow c = \sqrt{2\left[\bar{h}_{in} - h\left(\bar{s},\rho\right)\right]}$ Equation of State Output: $p, T, h, \rho, c, a, Ma, Z, \Gamma, A$ p_{throat} dA < 0dA > 0Outlet Inlet Throat Input: pin, Tin Chocking cond. $c_t = a$ Input: Maout $h(p_{in}, T_{in}) = \overline{h}_{in}$ $s(p_{in}, T_{in}) = \overline{s}$ $\dot{m} = \rho_t c_t A_t$ EoS.

Rotor design – purely impulse stage, constant channel width buckets with desired flow deflection angle

- Developed a 1D meanline design tool based on velocity triangles and celocity coefficient loss correlations
- Designed as an impulse single stage axial turbine with supersonic nozzles with a geometry calculated using Method of Characteristics (MoC) – Mach 2 outlet
- prismatic short blades (l_blade = 5.5 mm)
- high aerodynamic loading of the rotor blades
- Detached bow shockwave at the rotor leading edge
- boundary layer separation issue

Design parameters

Ansys CFX full stage simulation - effect of blade edge thickness; identifying shockwave structures and secondary loss sources

Ansys CFX full stage simulation – off-design operating charateristics of the machine – different pressure ratios and rotational speeds

······ Poly. (eta_16k) ······ Poly. (eta_20k) ····· Poly. (eta_24k) ····· Poly. (eta_28k) ···· Poly. (eta_32k)

v2 assembly

Iceland [Liechtenstein Norway **Norway** grants grants

4. MANUFACTURING, ASSEMBLY AND COMMISSIONING

4. MAN., ASS. AND COMM.

4. MAN., ASS. AND COMM.

4. MAN., ASS. AND COMM.

In experimental research, not everything goes according to your plan all the time...

Iceland Liechtenstein Norway **Norway** grants grants

5. EXPERIMENTAL RESULTS

Pressurized air measurements – verification of mechanical stability and integrity throughout the operating map

Pressurized air measurements – verification of mechanical stability and integrity throughout the operating map

Pressurized air measurements – verification of mechanical stability and integrity throughout the operating map

- Turbine mounted into the ORC rig
- updated electrical power output switchboard
- Low-speed off-pressure ratio performance exceeds expectation
- vibration issues at higher rotational speeds
- for safety reasons, max speed cap at 15 000 rpm
- will be updated with a new assembly more stable mode of operation, avoiding critical speeds
- a lot of experimental data collected and shared open-source (<u>GitHub repository</u>)

ČVUT

UCEEB

Iceland Liechtenstein Norway Norway grants grants

6. FUTURE WORK

6. FUTURE WORK

- Collecting even more (especially high speed, higher pressure ratio) data with the v2 Axial MM turbine
- Reducing manufacturing costs casting the casing instead of milling (molds)
- Comparing the effect of "simple" to "MoC" subersonic nozzles
- Optimization of the diffuser section of the turbine
- Reduction of the boundary layer separation in the rotor buckets suction side outlet
- Longevity and accelarated life testing of the turbine (bearings, generator unit)
- A publication comparing three types of expansion devices for the same unit and boundary conditions (RVE, Elektra, Axial) + sharing the raw experimental data open source (Mendeley Data, referenced in the publication)

Iceland D Liechtenstein Norway **Norway** grants grants

Working together for a green, competitive and inclusive Europe

THE PROJECT "OPTIMISED EXPANDERS FOR SMALL-SCALE DISTRIBUTED ENERGY SYSTEMS" BENEFITS FROM A € 1,469,700 GRANT FROM ICELAND, LIECHTENSTEIN AND NORWAY THROUGH THE EEA GRANTS AND THE TECHNOLOGY AGENCY OF THE CZECH REPUBLIC.

JAN.SPALE@CVUT.CZ